

TABLE I
SAMPLE COMPUTATIONS

	elliptic coaxial line	Partially-filled coaxial line	microstrip in a box	dielectric-supported-strip in a box	rectangular slab-line	microstrip	vertical microstrip	double dielectric microstrip
Structure								
$Z_0 (\Omega)$	$a_1 = 1.25$ $a_2 = 2.00$ $b_1 = 0.75$ $b_2 = 1.732$ $\epsilon_1 = \epsilon_2$ $\epsilon_3 = \epsilon_4$	$a = 3.50$ $b = 8.00$ $\theta = 2\pi/10$ $\epsilon_1 = \epsilon_2$ $\epsilon_3 = 3.0\epsilon_4$	$a = 2.02$ $b = 7.00$ $h = 1.00$ $w = 1.00$ $t = 0.01$ $\epsilon_1 = \epsilon_2$ $\epsilon_3 = \epsilon_4$ $\epsilon_4 = 3.5\epsilon_1$	$a = 5.00$ $b = 5.00$ $h = 1.00$ $w = 2.00$ $t = 0.001$ $\epsilon_1 = \epsilon_2$ $\epsilon_3 = 2.35\epsilon_4$	$a = 1.0$ $b = 1.25$ $d = 0.51$ $\epsilon = \epsilon_0$	$w = 1.00$ $t = 0.002$ $\lambda = 1.00$ $\epsilon_1 = \epsilon_2$ $\epsilon_3 = 9.6\epsilon_4$ $D = 12.00$	$a = 6.50$ $b = 2.00$ $\lambda = 1.00$ $t = 0.001$ $\epsilon_1 = \epsilon_2$ $\epsilon_3 = 2.55\epsilon_4$ $D = 12.00$	$w = 1.0$ $t = 0.02$ $\lambda = 0.60$ $\lambda_1 = 0.40$ $\epsilon_1 = 9.6\epsilon_4$ $\epsilon_3 = 2.65\epsilon_4$ $D = 12.0$
$Z_0 (\Omega)$	37.74	45.68	46.04	65.02	50.43	51.62	198.30	63.06
$Z_0 (\Omega)$ other method	37.43 (3, Table 2-3)	45.24 (4, Eq 5.31)	49.80* (4, Fig 3.13)	62.50 (5, Fig 7)	49.99 (4, Table 4.1)	49.79 (4, Table 5.4)		

*There are errors in [4, fig. 3.13]. These data are unreliable.

IV. EXAMPLES AND DISCUSSION

A general computer program has been written using the above formulation. Input consists of the structure parameters and the coordinates of the end points of each segment. Output consists of the charge distribution and the characteristic impedance. Some examples of computed results are given in Table I. Also given for comparison are some results obtained by other methods. Our solution is in good agreement with those obtained by other methods in most cases.

Although the computer program is written explicitly for the case of no infinite ground plane, it can be used to approximate an infinite ground plane by making one conductor a wide, but finite, plane. The fact that parts of the ground plane far from the other conductor are missing should cause negligible error in the result if the width is taken large. Some examples for the case of a ground plane were computed using this approximation and are included in Table I.

The formulation of this paper can be extended to multiconductor transmission lines. For an N -conductor transmission line, there are $N-1$ quasi-TEM modes [6]. Each corresponds to the case for which all conductors but one are grounded. The ungrounded conductor is set at unit potential. The charge on each conductor then will be equal to an element of the capacitance matrix for the line [1]. The inductance matrix for the line is $\epsilon_0\mu_0$ times the inverse of the capacitance matrix obtained by replacing all dielectrics by free space [1].

An alternative method for solving the matrix equation (17) for $[\alpha]$ is given in [7]. In that method, the constant k is eliminated and not determined.

REFERENCES

- [1] C. Wei, R. F. Harrington, J. R. Mautz, and T. K. Sarkar, "Multiconductor transmission lines in multilayered dielectric media," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 439-449, Apr. 1984.
- [2] R. F. Harrington, *Field Computation by Moment Methods*. New York: Macmillan, 1968; reprinted Melbourne, FL: Krieger, 1982.
- [3] R. F. Harrington, *Time-Harmonic Electromagnetic Fields*. New York: McGraw-Hill, 1961.
- [4] M. A. R. Gunston, *Microwave Transmission Line Impedance Data*. London: Van Nostrand Reinhold, 1972.
- [5] D. L. Gish and O. G. Graham, "Characteristic impedance and phase velocity of a dielectric supported air strip transmission line with side walls," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-18, pp. 131-148, Mar. 1970.
- [6] R. E. Collin, *Field Theory of Guided Waves*. New York: McGraw-Hill, 1960.

- [7] J. Venkataraman, S. M. Rao, A. R. Djordjević, T. K. Sarkar, and Y. Naiheng, "Analysis of arbitrarily oriented microstrip transmission lines in arbitrarily shaped dielectric media over a finite ground plane," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 952-959, Oct. 1985.

Correction to "Theoretical Considerations on the Use of Circularly Symmetric TE Modes for Digital Ferrite Phase Shifters"

D. M. BOLLE AND N. MOHSENIAN

Recently, we have become aware of increased publication activity by authors who refer to the above early paper.¹ We felt that it is particularly timely, therefore, to inform those concerned that in the above paper a few formulas, unfortunately, are in error. Therefore, we would like to bring attention to the correct version of the formulas. Equation (6), on p. 422, should appear as

$$\gamma_0^2 = \omega\mu_0[(1+\chi)^2 - \kappa^2] = \omega\mu_0\Delta \quad (6)$$

while a_1 and d_2 in (9) and (10) should be

$$a_1 = -a_0(\alpha/3) \quad (9)$$

$$d_2 = -1/4. \quad (10)$$

Equations (18) and (20), on p. 424, should read

$$\begin{aligned} & \frac{B_1(\alpha; \tau_1 x)}{H_1(\alpha; \tau_1 x)} \cdot \frac{F_1(\alpha; \tau_1 x) - F_2(\alpha; \tau_1 x)}{F_3(\alpha; \tau_1 x) - F_2(\alpha; \tau_1 x)} \\ & = \frac{B_1(\alpha; \tau_2 x)}{H_1(\alpha; \tau_2 x)} \cdot \frac{F_1(\alpha; \tau_2 x) - F_4(\alpha; \tau_2 x)}{F_3(\alpha; \tau_2 x) - F_4(\alpha; \tau_2 x)} \quad (18) \end{aligned}$$

where

$$F_2(\alpha; \tau x) = \tau y J_0(\tau y)/J_1(\tau y)$$

and

$$-j\omega\mu_0 b H_z^I = y J_0(yr/b) J_1(\tau y). \quad (20)$$

Manuscript received January 21, 1986.

The authors are with the Department of Computer Science and Electrical Engineering, Lehigh University, Bethlehem, PA 18015.

¹D. M. Bolle and G. S. Heller, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 421-426, July 1965.
IEEE Log Number 8608109.